Dynamic Orthogonal Components for Multivariate Time Series
نویسندگان
چکیده
We introduce dynamic orthogonal components (DOC) for multivariate time series and propose a procedure for estimating and testing the existence of DOCs for a given time series. We estimate the dynamic orthogonal components via a generalized decorrelation method that minimizes the linear and quadratic dependence across components and across time. We then use Ljung–Box type statistics to test the existence of dynamic orthogonal components. When DOCs exist, univariate analysis can be applied to build a model for each component. Those univariate models are then combined to obtain a multivariate model for the original time series. We demonstrate the usefulness of dynamic orthogonal components with two real examples and compare the proposed modeling method with other dimension-reduction methods available in the literature, including principal component and independent component analyses. We also prove consistency and asymptotic normality of the proposed estimator under some regularity conditions. We provide some technical details in online Supplementary Materials.
منابع مشابه
Garch Models of Dynamic Volatility and Correlation
Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...
متن کاملDynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملSLEX Analysis of Multivariate Nonstationary Time Series
We develop a procedure for analyzing multivariate nonstationary time series using the SLEX library (smooth localized complex exponentials), which is a collection of bases, each basis consisting of waveforms that are orthogonal and time-localized versions of the Fourier complex exponentials. Under the SLEX framework, we build a family of multivariate models that can explicitly characterize the t...
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملHierarchical dynamic models for multivariate times series of counts
In several application areas, we see the need for accurate statistical modeling of multivariate time series of counts as a function of relevant covariates. In ecology, count responses on species abundance are observed over several time periods at several locations, and the covariates that influence the abundance may be location-specific and/or time-varying. This paper describes a Bayesian frame...
متن کامل